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Abstract. Multistationarity is the property of a system to exhibit two distinct equi-
libria (steady-states) under otherwise identical conditions, and it is a phenomenon of
recognized importance for biochemical systems. Multistationarity may appear in the
parameter space as a consequence of saddle-node bifurcations, which necessarily require
a simple eigenvalue zero of the Jacobian, at the bifurcating equilibrium. Matrices with
a simple eigenvalue zero are generic in the set of singular matrices: any system whose
Jacobian has an algebraically multiple eigenvalue zero can be perturbed to a system
whose Jacobian has a simple eigenvalue zero. Thus, one would expect that in applica-
tions singular Jacobians are always with a simple eigenvalue zero. However, chemical
reaction networks typically consider a fixed network structure, while the freedom rests
with the various and different choices of kinetics. Here we present an example of a
chemical reaction network, whose Jacobian is either nonsingular or has an algebraically
multiple eigenvalue zero. The structural obstruction to the simplicity of the eigenvalue
zero is based on the network alone, and it is independent of the value of concentrations
and the choice of kinetics. This in particular constitutes an obstruction to standard
saddle-node bifurcations.
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1. Introduction

A bifurcation is a sudden qualitative change in the system behavior under a small change
in the parameter values. Bifurcation theory is hence a powerful tool to identify parameter
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2 STRUCTURAL OBSTRUCTION IN CHEMICAL REACTION NETWORKS

areas where certain dynamical behaviors of interest occur. We refer to the standard book
by Guckenheimer and Holmes [1] for background on bifurcations. The simplest bifurca-
tions occur according to one parameter, only. Standard and well-studied examples are
saddle-node bifurcations, that detect multistationarity, and Hopf bifurcations, that detect
oscillations. Their spectral condition is a simple eigenvalue zero (saddle-node) and a pair
of purely-imaginary complex-conjugated eigenvalues (Hopf). In a biochemical context,
which is the focus of the present paper, saddle-node bifurcations under the assumption of
mass action kinetics have been discussed by Conradi et al. [2] and Domijan and Kirkilio-
nis [3]. Otero-Muras and coauthors used computational methods to detect saddle-node
bifurcations in biochemical systems, see for example [4] and the many references therein.
For Hopf bifurcation, see the pioneering work by Gatermann et al. [5], applying concepts
from computer algebra to mass action systems, and Fiedler [6], with more general kinet-
ics and in global setting. By proving Hopf bifurcations in more circumstantial systems,
Conradi et al. detected oscillations in a mixed-mechanism phosphorylation system [7],
Boros and Hofbauer in planar deficiency-one mass-action systems [8], Hell and Rendall
in the MAP kinase cascade [9].

In the present paper, we investigate the necessary spectral condition for saddle-node
bifurcations: a simple eigenvalue zero of the Jacobian, at the equilibrium. Saddle-node
bifurcations are often invoked in the quest of finding bistable systems: a typical bistable
scheme considers two connecting saddle-node bifurcations, that give rise to bistability
and hysteresis phenomena [10]. More in general, a saddle-node bifurcation occurs, e.g.,
when two equilibria, one stable and one unstable, collide in a single saddle equilibrium
and disappear. Hence, such bifurcations point at parameter regions where multistation-
arity occurs. Multistationarity is the property of a chemical system to exhibit two or
more distinct equilibria, co-existing under otherwise identical conditions, and the phe-
nomenon has been proposed as an explanation for many epigenetic processes, including
cell differentiation [11]. As a consequence of its importance, multistationarity in chem-
ical reaction networks has been extensively studied, via different methods. See among
others the works by Rendall and coauthors [12–14], Dickenstein et al. [15], Shiu and
de Wolff [16], Feliu et al. [17], in a mass action context; Soulé [18], Craciun and Fein-
berg [19, 20], Mincheva and Roussel [21], Banaji and Craciun [22], Joshi and Shiu [23],
Banaji and Pantea [24], Conradi et al. [25], in more generality.

Finding equilibrium bifurcations for a parametric vector field f(x,λ) means solving a
system of constraints. First, f(x,λ) must satisfy the equilibrium constraints f(x̄, λ̄) = 0,
at a certain x̄ and λ̄. Second, bifurcation conditions on the Jacobian ∂xf(x̄, λ̄) must be
satisfied. Bifurcation conditions typically comprise the necessary spectral condition on
the eigenvalues of the Jacobian and further sufficient nondegeneracy conditions involving
higher-order derivatives. Solving such a system of constraints may be very demanding
in parametric systems. The point of view of genericity theory advocates looking only for
the necessary spectral condition, as this is sufficient in “most” applications to conclude a
bifurcation result. This approach brings an obvious advantage in simplifying the mathe-
matical analysis. In fact, bifurcation theory has been historically developed in a general
genericity framework [26]. A property of a set is generic if it holds on an open and dense
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subset. In particular, a saddle-node bifurcation happens generically in one-parameter
families of vector fields, at an equilibrium with a singular Jacobian. Thus, in the words
of Guckenheimer and Holmes [1, p. 149], one expects that the zero eigenvalue bifurca-
tions encountered in applications will be saddle-nodes. This expectation comes from the
intrinsic parameter uncertainties in experiments: only generic features are detectable.
Interestingly and quite ambiguously, [1] continues as follows. If they are not, then there
is probably something special about the formulation of the problem which restricts the
context so as to prevent the saddle-node from occurring.

Chemical reaction networks theory considers systems of Ordinary Differential Equations
(ODEs) that are built on two elements: a network structure and parametric reaction
rates (kinetics). The network structure is typically considered as given, and it fixes which
reactions take place, that is, which reactants react to which products. The parametric
nonlinearities model the mathematical laws of the reactions, and they can be chosen with
quite a freedom. Standard parametric families of nonlinearities are often considered as
reaction rates. For instance, mass action [27] kinetics, Michaelis-Menten [28] kinetics,
Hill’s kinetics [29], are important classes of nonlinearities in this context. These relevant
kinetics can be grouped and generalized in the definition 1 below, which assumes that
the reaction rate rj of a reaction j is a positive monotone function of the concentrations
of its reactants. The motivating observation for the present paper is that the network
structure is fixed, while the nonlinearities are relatively free. Hence, the genericity view-
point may apply due to the freedom of the reaction rates, or may not apply due to the
fixed structure of the network. Specifically, this paper investigates whether the network
structure, alone, might be “something special about the formulation of the problem” pre-
venting a saddle-node bifurcation to occur.

We present an example that answers two questions, both affirmatively. The first, quite
general and qualitative, is

Q1: Can the network structure alone prevent generic properties?

Here, “generic” indicates properties that are generic in more general families of vector
fields, and consequently might be expected to be generic also in the network setting. In
detail, we answer the following question.

Q2: Can the network structure alone prevent the simplicity of the eigenvalue zero?

We present an example of a network for which the associated ODEs system admits a
singular Jacobian, but never a Jacobian with a simple eigenvalue zero, for any choice
of the reaction rates. This in particular forbids the application of standard saddle-node
bifurcation theorems. In general, such an example shows that genericity methods must
be handled with extreme care when dealing with chemical reaction networks.

The paper is structured as follows. Section 2 introduces the setting of chemical reaction
networks theory. In section 3 we preliminary provide linear algebra conditions for the
simplicity of the eigenvalue zero of general square matrices. In section 4 we present
our main example of a chemical reaction network, whose associated Jacobian is either
nonsingular or possesses an algebraically multiple eigenvalue zero. Sections 3 and 4 are
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in principle self-contained. For a more in-detail explanation of the intuition behind our
example, however, section 5 introduces the network tools used to design such an exam-
ple: Child Selections and Partial Child Selections. Section 6 revisits our main example,
explaining it in such network terms. Section 7 concludes with the discussion.

Acknowledgments: This work has been supported by the Collaborative Research
Center (SFB) 910 of the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)-project number 163436311-SFB 910. We thank Jia-Yuan Dai for his en-
couragement in working on this problem.

2. Chemical Reaction Networks

We briefly present here the setting of Chemical Reaction Networks. A chemical reaction
network Γ is a pair of sets {M,E}: M is the set of species or chemicals or metabolites,
and E is the set of reactions. Both sets are finite with cardinalities ∣M∣ =M and ∣E∣ = E.
Letters m,n ∈ M and j ∈ E refer to species and reactions, respectively.

A reaction j is an ordered association between two positive linear combinations of species:

(1) j ∶ sj1m1 + ... + sjMmM Ð→
j
s̃j1m1 + ... + s̃jMmM .

The nonnegative coefficients sj , s̃j are called stoichiometric coefficients. Chemical net-
works deal with integer stoichiometric coefficients and typically 0, 1, or 2. However, we

can freely consider real sjm, s̃
j
m ∈ R≥0, as we have no mathematical reason for any restric-

tion. Species appearing at the left (right) hand side of (1) with nonzero coefficient are
called reactants (products) of reaction j. Many chemical systems are open systems: they
exchange chemicals with the outside environment. Inflow reactions are then reactions
with no reactants (sj = 0) and outflow reactions are reactions with no products (s̃j = 0).

The M×E stoichiometric matrix S is the matrix of all ordered stoichiometric coefficients:

(2) Smj ∶= s̃jm − sjm,

where s̃jm is the stoichiometric coefficient of m as product of j, and sjm is the stoichio-
metric coefficient of m as reactant of j. With this construction, a fixed order is assigned
to each reaction. In particular, we model a reversible reaction

(3) j ∶ A +B ←→
j

2C

simply as two irreversible reactions

(4) j1 ∶ A +B Ð→
j1

2C and j2 ∶ 2C Ð→
j2

A +B.

We use the notation Sj to refer to the column of the stoichiometric matrix S associated
to the reaction j. For example, in a network of four species {A,B,C,D}, reaction j1 in
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(4) is represented as the jth1 column of the stoichiometric matrix S as

(5) Sj1 =

j1

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

A −1
B −1
C 2
D 0

.

Note that stoichiometric columns associated with outflow (inflow) reactions always have
only negative (positive) entries.

Let x ≥ 0 be the M -vector of species concentrations. Under the assumption that the
reactor is well-mixed, spatially homogeneous and isothermal, the dynamics x(t) of the
concentrations satisfy the following system of ordinary differential equations:

(6) ẋ = g(x) ∶= Sr(x),

where S is the M ×E stoichiometric matrix (2) and r(x) is the E-vector of the reaction
functions (kinetics). Without any reactant, we consider as constant the reaction function
of inflow reactions jf :

(7) rjf (x) ≡ Fjf .

For any other reaction j, we do not impose any specific form of such functions, requiring
only that rj is monotone chemical, as defined in the following definition.

Definition 1 (monotone chemical function). A function rj is monotone chemical if

(1) rj depends only on the concentrations of the reactants to reaction j:

∂rj(x)
∂xm

≠ 0 if, and only if, m is a reactant of j.

(2) rj is nonnegative:

r(x) ≥ 0, for every x ≥ 0,

with rj(x) = 0 if, and only if, xm = 0, for some m reactant of j.

(3)
∂rj(x)
∂xm

> 0, for any m reactant of reaction j.

Definition 1 is standard in many mathematical contributions on chemical networks. Mass
action [27], Michaelis-Menten [28], Hill’s kinetics [29] are important reaction schemes
with a wide range of mathematical and biological applications, and they all follow defi-
nition 1. We use the notation

0 < rjm ∶=
∂

∂xm
rj(x),

to refer to the strictly positive partial derivatives. Then, the E ×M reactivity matrix R
is defined as

(8) Rjm ∶=
∂

∂xm
rj(x) =

⎧⎪⎪⎨⎪⎪⎩

rjm if m is a reactant of j

0 otherwise
.
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Finally, we define the Jacobian G of the system (6),

G ∶= gx(x) = SR,
where S is the stoichiometric matrix and R is the reactivity matrix defined above.

3. Algebraic multiplicity of the eigenvalue zero

We study the adjugate matrix of the Jacobian matrix G to address the geometric and
algebraic multiplicity of the eigenvalue zero of G. We gather some linear algebra facts
[30]. For any M ×M matrix B, the adjugate matrix Adj(B) is the transpose of its
cofactor matrix. Adj(B) satisfies

(9) BAdj(B) = Adj(B)B = detB IdM ,

where IdM is the M -dimensional identity matrix. In particular, we have the following
straightforward characterizations:

(1) Adj(B) is invertible if, and only if, B is invertible;
(2) Rank(B) =M − 1 if, and only if Rank(Adj(B)) = 1;
(3) Rank(B) ≤M − 2 if, and only if Adj(B) = 0.

Thus B has a geometrically simple eigenvalue 0 if, and only if,

(10)

⎧⎪⎪⎨⎪⎪⎩

detB = 0;

Adj(B) ≠ 0.

Let µ1, ..., µM be the eigenvalues of B counted with the respective algebraic multiplicity.
Assume B is nonsingular. Then

tr Adj(B) = detB trB−1

=∏
m

µm ∑
m

1

µm

=
M

∑
i=1
∏
m≠i

µm.

(11)

Clearly, (11) extends to singular matrices B, by continuity. In this latter case, we
conclude that the algebraic multiplicity of the eigenvalue 0 is exactly one if, and only if,

tr Adj(B) ≠ 0.

In conclusion, we have proved the following proposition.

Proposition 3.1. The Jacobian G possesses an algebraically simple eigenvalue zero if,
and only if,

(12)

⎧⎪⎪⎨⎪⎪⎩

detG = 0;

tr Adj(G) ≠ 0.

As a corollary of interest, we have the following.

Corollary 3.2. Consider the system (6), and its Jacobian G. Assume that, for any
choice of (r, x) such that detG = 0, we have that tr Adj(G) = 0. Then either
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(i) G is nonsingular

or

(ii) G has an eigenvalue zero of algebraic multiplicity strictly bigger than 1.

Proof of Corollary 3.2. If detG ≠ 0, then G is nonsingular. Else, if detG = 0, we have
by assumption that tr Adj(G) = 0. By Proposition 3.1, we have that the eigenvalue zero
is not algebraically simple. �

The next section presents an example where the assumptions of Corollary 3.2 hold.

4. Main Example

We present a network whose associated system of ODEs admits a singular Jacobian, but
never a Jacobian with a simple eigenvalue zero, for any choice of monotone chemical
functions endowing the network. In particular, the algebraic multiplicity of the eigen-
value zero is always either 0 or > 1. The network possesses 4 species and 6 reactions,
and it is as follows.

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A +B Ð→
1

2A

2AÐ→
2

2B

B Ð→
3
B +C

C Ð→
4
A +C

B +C +D Ð→
5

Ð→
FD

D

Reaction 5 is an outflow from B,C,D, while FD is an inflow to D. The system of ODEs
is then

(14) ẋ = Sr(x) =

1 2 3 4 5 FD

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

A 1 −2 0 1 0 0
B −1 2 0 0 −1 0
C 0 0 1 0 −1 0
D 0 0 0 0 −1 1

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

r1(xA, xB)
r2(xA)
r3(xB)
r4(xC)

r5(xB, xC , xD)
FD

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

We have added labels to rows and columns of the stoichiometric matrix S for simplicity
of reading. In expanded form, the system reads:

(15)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋA = r1(xA, xB) − 2r2(xA) + r4(xC)
ẋB = −r1(xA, xB) + 2r2(xA) − r5(xB, xC , xD)
ẋC = r3(xB) − r5(xB, xC , xD)
ẋD = −r5(xB, xC , xD) + FD

We carry out the analysis in a purely algebraic manner: we investigate the structural
relation between detG and tr Adj(G), independently of the chosen value of x. In par-
ticular, we do not even a priori require that x is an equilibrium. However, preliminarly
note that the network does admit an equilibrium: the vector

r0 ∶= (r1, r2, r3, r4, r5, FD)T = (r, r, r, r, r, r)T ,
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r ∈ R>0, is a positive right kernel vector of the stoichiometric matrix, i.e., it solves

0 = Sr0.

The Jacobian matrix G of the system reads:

(16) G =
⎛
⎜⎜⎜
⎝

r1A − 2r2A r1B r4C 0
−r1A + 2r2A −r1B − r5B −r5C −r5D

0 r3B − r5B −r5C −r5D
0 −r5B −r5C −r5D

⎞
⎟⎟⎟
⎠

We verify whether the matrix G admits a simple eigenvalue zero. According to section
3, we check whether there is a positive solution to the system:

(17)

⎧⎪⎪⎨⎪⎪⎩

detG = 0

tr Adj(G) ≠ 0
,

where Adj(G) is the adjugate matrix of G. We compute the deteminant of G obtaining

(18) detG = (r1A − 2r2A)r3Br4Cr5D.

Hence, G is singular if, and only if, λ ∶= r1A − 2r2A = 0. We compute the adjugate of G:

(19) Adj(G) =
⎛
⎜⎜⎜
⎝

0 −r3Br4Cr5D −r1Br4Cr5D (r1B + r3B)r4Cr5D
0 0 λ r4Cr5D −λ r4Cr5D

λ r3Br5D λ r3Br5D 0 −λ r3Br5D
−λ r3Br5C −λ r3Br5C −λ r5Br4C λ(r5Br4C + r3Br5C − r3Br4C)

⎞
⎟⎟⎟
⎠
.

Clearly, the trace of Adj(G) reads

(20) tr Adj(G) = λ(r5Br4C + r3Br5C − r3Br4C),

and tr Adj(G) = 0 whenever λ = 0. Thus, system (17) is never satisfied: the algebraic
multiplicity of the eigenvalue zero is strictly bigger than 1, for any choice of r and x for
which G is singular. In particular, note that for a singular G, the adjugate matrix reads:

(21) Adj ∣
detG=0(G) =

⎛
⎜⎜⎜
⎝

0 −r3Br4Cr5D −r1Br4Cr5D (r1B + r3B)r4Cr5D
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

Hence, Adj(G)∣
detG=0 ≠ 0, and the Jacobian G has a geometrically simple but alge-

braically multiple eigenvalue zero. The precise algebraic multiplicity cannot be asserted
from the adjugate matrix alone. An explicit symbolic computation of the eigenvalues
shows that the Jacobian G, when singular, always possesses an algebraically double
eigenvalue zero.

5. Child Selections and Partial Child Selections

We introduce the main tools enabling us to discuss the problem in network language.
This provides clarification on the design of our main example of section 4.
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Definition 2 (Child Selections). A Child Selection is an injective map

J ∶MÐ→ E,

which associates to every species m ∈ M a reaction j ∈ E such that m is a reactant of
reaction j.

Let SJ indicate the matrix whose mth column is the J(m)th column of S. In particular,
the columns of SJ correspond one-to-one, and following the order, to the reactions

J(m1), J(m2), ... , J(mM−1), J(mM).
We associate to each Child Selection J the coefficient

αJ ∶= detSJ.

The Jacobian determinant of G can be expressed in terms of Child Selections:

Proposition 5.1. Let G be a network Jacobian matrix, in the above settings. Then:

(22) detG = ∑
J

αJ ∏
m∈M

rJ(m)m,

The sum runs on all Child Selections. For a proof, see [31]. We call the coefficient αJ

behavior coefficient. Depending on the sign of αJ we classify a Child Selection as follows.
We call a Child Selection J zero if αJ = 0. On the contrary, we call J a nonzero Child
Selection if αJ ≠ 0.

We turn now to a related concept: the Partial Child Selections (PCS), complimentarily
useful to analyze Adj(G).

Definition 3 (Partial Child Selections). A Partial Child Selection J∨mi is an injective
map

J∨mi ∶M ∖ {mi} Ð→ E,

which associates to each species m ≠mi a reaction j such that m is a reactant of j.

Without loss of generality, assume 1, ..., i, ...,M . In analogy to the submatrix SJ for a
Child Selection J, the expression SJ∨mi indicates the M × (M − 1) matrix with columns
corresponding one-to-one, and following the order, to the reactions

J∨mi(m1), ... , J∨mi(mi−1), J∨mi(mi+1), ... , J∨mi(mM).
That is, the first column is the stoichiometric column Sj1 of the reaction j1 = J∨mi(m1).
Analogously, the ith column is the stoichiometric column Sji of the reaction ji = J∨mi(mi+1),
and so on. We associate to each Partial Child Selection J∨mi the behavior coefficient:

βJ∨mi ∶= detSJ∨mi

∨mi
,

where the notation SJ∨mi

∨mi
indicates the (M − 1) × (M − 1) matrix obtained from SJ∨mi

by removing the mth
i row. If the behavior coefficient βJ∨mi is zero (nonzero) we call the

Partial Child Selection J∨mi zero (nonzero), accordingly.

The role of Partial Child Selections in the analysis of the present paper is clarified by
the following proposition.
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Proposition 5.2. Let G be the Jacobian matrix of the system (6) and let Adj(G)mm
indicate the mth diagonal entry of its adjugate. Then the following expansion holds:

(23) Adj(G)mm = ∑
J∨m

βJ∨m ∏
n≠m

rJ∨m(n)n,

where J∨m are Partial Child Selections. The sum runs on all Partial Child Selections
J∨m. In particular, the trace of the adjugate can be expanded as

(24) tr Adj(G) = ∑
m∈M

∑
J∨m

βJ∨m ∏
n≠m

rJ∨m(n)n.

Proof of Proposition 5.2. The mth diagonal entry of the adjugate matrix of G is

(25) Adj(G)mm = det(G∨m
∨m),

where G∨m
∨m indicates the cofactor of G obtained removing the mth row and the mth

column. We recall that G = SR, where S is the stoichiometric matrix (def.(2)) and R is
the reactivity matrix (def.(8)). We analyze the expression Adj(G)mm using Cauchy-Binet
formula.

Adj(G)mm =det(G∨m
∨m)

=det(S∨mR∨m)

= ∑
E∈EM−1

detSE∨m detR∨m
E .

(26)

Note that detR∨m
E ≠ 0 if, and only if, there exists a Partial Child Selection J∨m, such

that J∨m(M ∖ {m}) = E . Then,

∑
E∈EM−1

detSE∨m detR∨m
E = ∑

E=J∨m(M∖{m})
detSE∨m detR∨m

E

= ∑
E=J∨m(M∖{m})

detSE∨m sgn(J∨m) ∏
n≠m

rJ∨m(n)n
(27)

Above, we have expanded detR∨m
E via Leibniz formula. The expression sgn(J∨m) indi-

cates the signature (or parity) of J∨m. Then,

(28) sgn(J∨m) detSE=J
∨m(M∖{m}) = detSJ∨m

∨m = βJ∨m ,

which leads to the desired equality:

(29) Adj(G)mm = ∑
J∨m

βJ∨m ∏
n≠m

rJ∨m(n)n.

Moreover,

(30) tr Adj(G) = ∑
m

Adj(G)mm = ∑
m
∑
J∨m

βJ∨m ∏
n≠m

rJ∨m(n)n.

�
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6. Main example revisited

In this section we explain the design of our main example of section 4 in light of the
tools introduced in section 5. The system (15) possesses only three Child Selections,

J1 ∶= J1(A,B,C,D) = (1,3,4,5),

J2 ∶= J2(A,B,C,D) = (2,3,4,5),

and

J3 ∶= J1(A,B,C,D) = (2,1,4,5).

The first observation is that the two stoichiometric columns SJ1(A) and SJ2(A) are lin-
early dependent. In particular, SJ1(A) = −2 SJ2(A). This implies that J3 is a zero Child
Selection since

αJ3 = detSJ3 = det

2 1 4 5

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

A −2 1 1 0
B 2 −1 0 −1
C 0 0 0 −1
D 0 0 0 −1

= 0.

Moreover, the two nonzero Child Selections J1 and J2 differ only in the image of species
A: J1(A) = 1, J2(A) = 2. Consequently, by property of the determinant, αJ1 = −2 αJ2 .
In particular:

αJ1 = det

1 3 4 5

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

A 1 0 1 0
B −1 0 0 −1
C 0 1 0 −1
D 0 0 0 −1

= 1 and αJ2 = det

1 3 4 5

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

A −2 0 1 0
B 2 0 0 −1
C 0 1 0 −1
D 0 0 0 −1

= −2.

Via Proposition 5.1, the determinant of G reads

detG = (αJ1r1A + αJ2r2A)r3Br4Cr5D

and thus detG = 0 if, and only if, r1A = 2r2A.

As explained in section 3, the multiplicity of the eigenvalue zero can be asserted by
looking at the trace of the adjugate matrix. We expands two diagonal entries, only, for
sake of exemplification. Let us consider the diagonal entries Adj(G)AA, and Adj(G)DD.
By Proposition 5.2, we have:

Adj(G)AA = ∑
J∨A

βJ∨A ∏
m≠A

rJ∨A(m)m and Adj(G)DD = ∑
J∨D

βJ∨D ∏
m≠D

rJ∨D(m)m.

There are 2 Partial Child Selections J∨A:

(31)

⎧⎪⎪⎨⎪⎪⎩

J∨A1 ∶= J∨A1 (B,C,D) = (3,4,5)
J∨A2 ∶= J∨A2 (B,C,D) = (1,4,5)
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In particular, both J∨A1 and J∨A2 select reaction 4. Note that

S4
∨A =

4

⎛
⎝
⎞
⎠

B 0
C 0
D 0

,

hence both J∨A1 and J∨A2 are zero:

βJ∨A1
= det

3 4 5

⎛
⎝

⎞
⎠

B 0 0 −1
C 1 0 −1
D 0 0 −1

= 0 = det

3 4 5

⎛
⎝

⎞
⎠

B −1 0 −1
C 0 0 −1
D 0 0 −1

= βJ∨A2 .

The example is designed so that a similar intuition implies that the diagonal entries
Adj(G)BB and Adj(G)CC are zero, as well: we omit the analogous computation. With

regard of Adj(G)DD, there are 8 Partial Child Selections J∨D:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J∨D1 ∶= J∨D1 (A,B,C) = (2,1,4)
J∨D2 ∶= J∨D2 (A,B,C) = (2,1,5)
J∨D3 ∶= J∨D3 (A,B,C) = (1,3,4)
J∨D4 ∶= J∨D4 (A,B,C) = (2,3,4)
J∨D5 ∶= J∨D5 (A,B,C) = (1,5,4)
J∨D6 ∶= J∨D6 (A,B,C) = (2,5,4)
J∨D7 ∶= J∨D7 (A,B,C) = (1,3,5)
J∨D8 ∶= J∨D8 (A,B,C) = (2,3,5)

Analogously to the ‘full’ Child Selection J3, both J∨D1 and J∨D2 are zero, as they select
both reactions 1 and 2 whose stoichiometry is linearly dependent.

βJ∨D1
= det

2 1 4

⎛
⎝

⎞
⎠

A −2 1 1
B 2 −1 0
C 0 0 0

= 0 = det

2 1 5

⎛
⎝

⎞
⎠

A −2 1 0
B 2 −1 −1
C 0 0 −1

= βJ∨D2 .

The other six Partial Child Selections can be grouped in three pairs: (J∨D3 ,J∨D4 ),
(J∨D5 ,J∨D6 ), and (J∨D7 ,J∨D8 ). Each pair consists of two Partial Child Selections which
differ only in the image J∨D(A) of the species A: either the reaction 1 or 2. Hence, the
coefficients behaviors within each pair have a ratio of -2. In conclusion, again, in total
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analogy to the full Child Selections J1 and J2, we have that:

Adj(G)DD = ∑
J∨D
∏
m≠D

rJ∨D(m)m

=
8

∑
i=3
βJ∨Di ∏

m≠D
rJ∨Di (m)m

=(βJ∨D3 r1A + βJ∨D4 r2A)r3Br4C + (βJ∨D5 r1A + βJ∨D6 r2A)r5Br4C
+ (βJ∨D7 r1A + βJ∨D8 r2A)r3Br5C

=(−r1A + 2r2A)r3Br4C + (r1A − 2r2A)r5Br4C + (r1A − 2r2A)r3Br5C
=(r1A − 2r2A)(r5Br4C + r3Br5C − r3Br4C).

(32)

Hence, tr Adj(G) = (r1A − 2r2A)(r5Br4C + r3Br5C − r3Br4C), and tr Adj(G) = 0 whenever
λ = (r1A − 2r2A) = 0, which characterizes detG = 0.

7. Discussion

In this paper, we have presented an example of a chemical reaction network, for which
the Jacobian of the associated dynamical system can be singular but never possesses a
simple eigenvalue zero, for any choice of reaction rates r and any value of the concen-
trations x. The construction relies on studying algebraically the structure of the zero
eigenvalues of the Jacobian G, using as a tool the adjugate matrix Adj(G).

It is natural to ask whether it is possible to have smaller examples of such a phenomenon.
First, species D and reactions 5 and FD do not play a role in the algebraic feature we
have presented. In particular, the same computation holds for a network Γ̃:

(33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A +B Ð→
1

2A

2AÐ→
2

2B

B Ð→
3
B +C

C Ð→
4
A +C

where species D and reactions 5 and FD have been removed. This constitutes the core
example of the feature. However, the associated ODEs system,

(34)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋA = r1(xA, xB) − 2r2(xA) + r4(xC)
ẋB = −r1(xA, xB) + 2r2(xA)
ẋC = r3(xB)

,

never admits an equilibrium, for any choice of r. Given the intended application for equi-
libria bifurcation analysis, we have opted for an example that admits an equilibrium,
at least. Nevertheless, let us stress one last time that the analysis is not linked with
the precise value of the concentration x. It is opinion of the author that such feature
cannot happen in networks with less than 3 species, even when x is not necessarily an
equilibrium.
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The example we have presented includes reactions 1, 3, and 4, which are explicitly
autocatalytic. Here, explicitly autocatalytic simply means that species with nonzero
stoichiometric coefficients appear at both sides of the reaction. It is possible to remove
explicit autocatalysis by considering intermediates, hence splitting reactions 1, 3, 4 into

(35)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A +B Ð→
1a

2E and E Ð→
1b

A

B Ð→
3a

F +C and F Ð→
3b

B

C Ð→
4a

G +A and GÐ→
4b

C

.

The computation follows analogously as the presented example. The removal of explicit
autocatalysis by adding intermediates has the consequence of considerably increasing
the size of the system. Thus, we have chosen to present the autocatalytic representation
to keep the example as small as possible.

The mathematical literature on chemical reaction networks is often concerned with mass
action kinetics:

(36) rj(x) = kj ∏
m∈M

xs
j
m
m ,

where sjm is the stoichiometric coefficient of m as a reactant of the reaction j. Such an
assumption gives rise to polynomial systems of differential equations with the interesting
constraint that x is real positive. Our system of ordinary differential equations (15),
endowed with mass action, reads

(37)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋA = k1xAxB − 2k2x
2
A + k4xC

ẋB = −k1xAxB + 2k2x
2
A − k5xBxCxD

ẋC = k3xB − k5xBxCxD
ẋD = −k5xBxCxD + FD

.

Unfortunately, this polynomial system does not admit an equilibrium with singular Ja-
cobian, for any choice of k = (k1, k2, k3, k4, k5, FD)T and x > 0. In fact, the condition for
a singular Jacobian is r1A = 2r2A, as computed in section 4. According to mass action,
the condition reads

(38) k1xB = 4k2xA.

Solving (37) for equilibria gives the additional constraint:

(39) 2k2x
2
A − k1xAxB = k5xBxCxD > 0.

But, inserting (38) into (39) we obtain

(40) 2k2x
2
A − k1xAxB = 2k2x

2
A − 4k2x

2
A < 0,

hence there are no positive equilibra with singular Jacobian. However, it is easily possible
to modify the system in order to maintain its validity as a mass action example. One
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possibility, with 6 species and 9 reactions is:

(41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A +C Ð→
1

2B

AÐ→
2
C

B Ð→
3
A

B +D Ð→
4

Ð→
FD

D

C Ð→
5
C +E

E Ð→
6
B +E

E + F Ð→
7

Ð→
FF

F

,

with associated mass action system

(42)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋA = −k1xAxC − k2xA + k3xB
ẋB = 2k1xAxC − k3xB − k4xBxD + k6xE
ẋC = −k1xAxC + k2xA
ẋD = FD − k4xBxD
ẋE = k5xC − k7xExF
ẋF = FF − k7xExF

Again, we had to pay a price in terms of the dimension of the system. A straighforward
computation shows:

(43)

⎧⎪⎪⎨⎪⎪⎩

detG = (k1xC − k2)k3k4k5k6k7xBxE
tr Adj(G) = −(k1xC − k2)k3k5k6(k4xB + k7xE)

.

In particular, detG = 0 implies tr Adj(G) = 0, hence system (17) is never satisfied: it is
possible to have a singular Jacobian but never with a simple eigenvalue zero, precisely
as (15). Moreover, for

k = (k1, k2, k3, k4, k5, k6, k7, FD)T = (1,1,2,1,1,1,1,1)T ,
the value

x = (xA, xB, xC , xD, xE , xF )T = (1,1,1,1,1,1)T

is an equilibrium with a singular Jacobian. Since the core mathematical intuition is
analogous, we have extendedly presented in terms of Child Selections and Partial Child
Selections the more concise version (15), only.

The linearization at any zero-eigenvalue point of the presented system (15) possesses a
geometrically simple but algebraically double eigenvalue zero. This spectral condition is
precisely the one of a Takens-Bogdanov bifurcation. Such type of bifurcation was stud-
ied independently by Floris Takens [32] and Rifkat Bogdanov [33]. In a neighborhood of
the bifurcation point, it is possible to identify a saddle-node bifurcation curve, a Hopf
bifurcation curve, and a homoclinic saddle connection curve. Hence, a Takens-Bogdanov
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bifurcation implies both multistationarity and oscillations due to the presence of, both,
saddle-node and Hopf bifurcations, respectively. In a biochemical context, Kreusser and
Rendall [34] have proved the existence of a periodic orbit in a system modeling the
activation of the Lymphocyte-specific protein tyrosine kinase, by identifying a Takens-
Bogdanov bifurcation. However, a Takens-Bogdanov bifurcation happens generically in
a system with two (!) parameters, at an equilibrium whose Jacobian satisfies such spec-
tral condition. On the contrary, in our example, the spectral condition is achieved by
solving only one equality: detG = 0. A proper unfolding as Takens-Bogdanov is thus
not possible. In this sense, our example can be considered a case of “not unfoldable
Takens-Bogdanov bifurcation”. The precise local dynamics of our example cannot be
explained by standard bifurcation theorems, and it requires further investigation.

In conclusion, properties that are generic in general vector fields need not be generic
when restricted to systems with a fixed network structure. A detailed investigation for
further properties is needed. For instance, another theoretical possible scheme for bista-
bility is a pitchfork bifurcation. Pitchfork bifurcations relate to saddle-node in having the
same spectral condition, but the bifurcation happens from a reference equilibrium per-
sisting at any value of the bifurcation parameter, in contrast to the general saddle-node
bifurcation. The equilibria diagram of a pitchfork bifurcation is topologically just the
superposition of the diagram of a saddle-node bifurcation to a constant equilibrium line,
suggesting the shape of a pitchfork. More in detail, at the bifurcation point, a stable
equilibrium loses stability by generating two other stable equilibria (bistability!). On
one side of the bifurcation point, there is one stable equilibrium, and on the other side,
there are three equilibria: two stable equilibria with one unstable equilibrium within. A
picture with reverse stability is of course possible, in analogy. In contrast to saddle-node
bifurcations, however, pitchfork bifurcations are nongeneric in the set of vector fields
with a singular Jacobian, hence - as already discussed - in applications we expect bista-
bility arising from a pair of connected saddle-node bifurcations, rather than from one
single pitchfork bifurcation. Investigating whether certain networks have the property
to exhibit generically pitchfork bifurcations rather than saddle-node bifurcations is par-
ticularly interesting as it provides an alternative and unexpected scheme for bistability,
where no hysteretic switch-like behavior is present. More in general, this work calls for
investigating further whether the network structure may or may not interfere with the
genericity of certain properties. Such a question can be addressed both in the case of
a chosen kinetics, or more in general as in this paper. Answers are quite interesting
both ways: a positive answer would greatly simplify the bifurcation analysis, as it would
grant for free such generic property, while a negative answer would provide examples of
networks that show surprising features.
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